Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 2): 131465, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604427

RESUMO

This research focused on synthesizing a CdIn2Se4@Ch nanocomposite by doping CdIn2Se4 into chitosan using a photolysis assisted ultrasonic process. The aim was to enhance the photodegradation efficiency of ofloxacin and 2,4-dichlorophenoxyacetic acid under sunlight. The synthesized CdIn2Se4@Ch nanocomposite was investigated via different techniques, including XRD, XPS, FTIR, TEM, DSC, TGA, UV-Vis and PL. The study also investigated the influence of various reaction parameters, including the effects of inorganic and organic ions. The synthesized nanocomposite demonstrated exceptional efficiency, achieving 86 % and 95 % removal rates, with corresponding rate constants of 0.025 and 0.047 min-1. This performance surpasses that of CdIn2Se4 by approximately 1.35 and 2.25 times, respectively. The values of COD were decreased to 78 and 86 % for ofloxacin and 2,4-dichlorophenoxyacetic, while the TOC values decreased to 71 and 84 %, respectively, from their premier values. The improvement in performance is associated with the introduction of CdIn2Se4 into chitosan, resulting in the self-integration of Cd into the catalyst. This creates a localized accumulation point for electrons, enhancing the efficiency of charge separation and further reducing the surface charge of chitosan. Experimental evidence suggests that superoxide and hydroxyl radicals play a significant role in the photodegradation of pollutants. Additionally, the nanocomposite exhibits excellent stability and can be reused up to five times, indicating remarkable stability and reusability of the developed photocatalyst.


Assuntos
Quitosana , Nanocompostos , Ofloxacino , Quitosana/química , Nanocompostos/química , Ofloxacino/química , Fotólise , Ácido 2,4-Diclorofenoxiacético/química , Catálise , Cádmio/química
2.
Heliyon ; 10(4): e26633, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404854

RESUMO

The present study serves experimental and theoretical analyses in developing a hybrid advanced structure as a photolysis, which is based on electrospun Graphene Oxide-titanium dioxide (GO-TiO2) nanofibers as an electron transfer material (ETMs) functionalized for perovskite solar cell (PVSCs) with GO. The prepared ETMs were utilized for the synthesis of mixed-cation (FAPbI3)0.8(MAPbBr3)0.2. The effect of GO on TiO2 and their chemical structure, electronic and morphological characteristic were investigated and discussed. The elaborated device, namely ITO/Bl-TiO2/3 wt% GO-TiO2/(FAPbI3)0.8(MAPbBr3)0.2/spiro-MeTAD/Pt, displayed 20.14% disposition and conversion solar energy with fill factor (FF) of 1.176%, short circuit current density (Jsc) of 20.56 mA/cm2 and open circuit voltage (VOC) 0.912 V. The obtained efficiency is higher than titanium oxide (18.42%) and other prepared GO-TiO2 composite nanofibers based ETMs. The developed materials and device would facilitate elaboration of advanced functional materials and devices for energy storage applications.

3.
RSC Adv ; 13(51): 36280-36292, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38090067

RESUMO

The level of free bilirubin is a considerable index for the characterization of jaundice-related diseases. Herein, a biosensor was fabricated via the immobilization of bilirubin oxidase (BOx) on graphene oxide (GO) and polyaniline (PANI) that were electrochemically co-precipitated on indium tin oxide (ITO) conductive glass. The structural enzyme electrode was characterized by FTIR, XRD, and Raman spectroscopy, while the spectral and thermal properties were investigated by UV-vis and thermogravimetric analysis (TGA). Owing to the activity of the fabricated BOx/GO@PANI/ITO biosensor, it could detect free bilirubin with good selectivity and sensitivity in a low response time. The electrochemical response was studied using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). At polarization potential 0.2 V vs. Ag/AgCl, the fabricated sensor illustrated a response in only 2 s at 30 °C and pH 7.5. The LOD and LOQ for the BOx/GO@PANI/ITO biosensor were calculated and found to be 0.15 nM and 2.8 nM, respectively. The electrochemical signal showed a linear response in the concentration range 0.01-250 µM. At 5 °C, the biosensor demonstrated a half-time of 120 days, through which it could be utilized 100 times at this temperature conditions. By using a common colorimetric method, the data on bilirubin levels in serum showed a determination coefficient (R2) of 0.97.

4.
Heliyon ; 9(12): e22559, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107327

RESUMO

Significant deformation of the metal structure can be achieved without breaking or cracking the metal. There are several methods for deformation of metal plastics. The most important of these methods are angular channel pressing process, high-pressure torsion, multidirectional forging process, extrusion-cyclic compression process, cumulative climbing connection process, consecutive concreting and smoothing method, high-pressure pipe torsion. The nanocomposite is a multiphase material which the size of one of its phases is less than 100 nm in at least one dimension. Due to some unique properties, metal-based nanocomposites are widely used in engineering applications such as the automotive and aerospace industries. Polymer-based nanocomposites are two-phase systems with polymer-based and reinforcing phases (usually ceramic). These materials have a simpler synthesis process than metal-based nanocomposites and are used in a variety of applications such as the aerospace industry, gas pipelines, and sensors. Severe plastic deformation (SPD) is known to be the best method for producing bulk ultrafine grained and nanostructured materials with excellent properties. Different Severe plastic deformation methods were developed that are suitable for sheet and bulk solid materials. During the past decade, efforts have been made to create effective Severe plastic deformation processes suitable for producing cylindrical tubes. In this paper, we review Severe plastic deformation processes intended to nanostructured tubes, and their effects on material properties and severe plastic deformation is briefly introduced and its common methods for bulk materials, sheets, and pipes, as well as metal background nanocomposites, are concisely introduced and their microstructural and mechanical properties are discussed. The paper will focus on introduction of the tube Severe plastic deformation processes, and then comparison of them based on their advantages and disadvantages from the viewpoints of processing and properties.

5.
RSC Adv ; 13(4): 2487-2500, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36741187

RESUMO

Lung cancer is nowadays among the most prevalent diseases worldwide and features the highest mortality rate among various cancers, indicating that early diagnosis of the disease is of paramount importance. Given that the conventional methods of cancer detection are expensive and time-consuming, special attention has been paid to the provision of less expensive and faster techniques. In recent years, the dramatic advances in nanotechnology and the development of various nanomaterials have led to activities in this context. Recent studies indicate that the graphene oxide (GO) nanomaterial has high potential in the design of nano biosensors for lung cancer detection owing to its unique properties. In the current article, a nano biosensor based on a DNA-GO nanohybrid is introduced to detect deletion mutations causing lung cancer. In this method, mutations were detected using a FAM-labeled DNA probe with fluorescence spectrometry. GO was synthesized according to Hummers' method and examined and confirmed using Fourier Transform Infrared (FT-IR) Spectrometry and UV-vis spectrometry methods and Transmission Electron Microscopy (TEM) images.

7.
Nanoscale Res Lett ; 17(1): 50, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35499625

RESUMO

Conductive gels are a special class of soft materials. They harness the 3D micro/nanostructures of gels with the electrical and optical properties of semiconductors, producing excellent novel attributes, like the formation of an intricate network of conducting micro/nanostructures that facilitates the easy movement of charge carriers. Conductive gels encompass interesting properties, like adhesion, porosity, swelling, and good mechanical properties compared to those of bulk conducting polymers. The porous structure of the gels allows the easy diffusion of ions and molecules and the swelling nature provides an effective interface between molecular chains and solution phases, whereas good mechanical properties enable their practical applications. Due to these excellent assets, conductive gels are promising candidates for applications like energy conversion and storage, sensors, medical and biodevices, actuators, superhydrophobic coatings, etc. Conductive gels offer promising applications, e.g., as soft sensors, energy storage, and wearable electronics. Hydrogels with ionic species have some potential in this area. However, they suffer from dehydration due to evaporation when exposed to the air which limits their applications and lifespan. In addition to conductive polymers and organic charge transfer complexes, there is another class of organic matter called "conductive gels" that are used in the organic nanoelectronics industry. The main features of this family of organic materials include controllable photoluminescence, use in photon upconversion technology, and storage of optical energy and its conversion into electricity. Various parameters change the electronic and optical behaviors of these materials, which can be changed by controlling some of the structural and chemical parameters of conductive gels, their electronic and optical behaviors depending on the applications. If the conjugated molecules with π bonds come together spontaneously, in a relative order, to form non-covalent bonds, they form a gel-like structure that has photoluminescence properties. The reason for this is the possibility of excitation of highest occupied molecular orbital level electrons of these molecules due to the collision of landing photons and their transfer to the lowest unoccupied molecular orbital level. This property can be used in various nanoelectronic applications such as field-effect organic transistors, organic solar cells, and sensors to detect explosives. In this paper, the general introduction of conductive or conjugated gels with π bonds is discussed and some of the physical issues surrounding electron excitation due to incident radiation and the mobility of charge carriers, the position, and role of conductive gels in each of these applications are discussed.

8.
Nanoscale Res Lett ; 16(1): 177, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34894321

RESUMO

Improving the anode properties, including increasing its capacity, is one of the basic necessities to improve battery performance. In this paper, high-capacity anodes with alloy performance are introduced, then the problem of fragmentation of these anodes and its effect during the cyclic life is stated. Then, the effect of reducing the size to the nanoscale in solving the problem of fragmentation and improving the properties is discussed, and finally the various forms of nanomaterials are examined. In this paper, electrode reduction in the anode, which is a nanoscale phenomenon, is described. The negative effects of this phenomenon on alloy anodes are expressed and how to eliminate these negative effects by preparing suitable nanostructures will be discussed. Also, the anodes of the titanium oxide family are introduced and the effects of Nano on the performance improvement of these anodes are expressed, and finally, the quasi-capacitive behavior, which is specific to Nano, will be introduced. Finally, the third type of anodes, exchange anodes, is introduced and their function is expressed. The effect of Nano on the reversibility of these anodes is mentioned. The advantages of nanotechnology for these electrodes are described. In this paper, it is found that nanotechnology, in addition to the common effects such as reducing the penetration distance and modulating the stress, also creates other interesting effects in this type of anode, such as capacitive quasi-capacitance, changing storage mechanism and lower volume change.

9.
J Nanobiotechnology ; 19(1): 159, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051806

RESUMO

In this article, we will describe the properties of albumin and its biological functions, types of sources that can be used to produce albumin nanoparticles, methods of producing albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations. In view of the increasing use of Abraxane and its approval for use in the treatment of several types of cancer and during the final stages of clinical trials for other cancers, to evaluate it and compare its effectiveness with conventional non formulations of chemotherapy Paclitaxel is paid. In this article, we will examine the role and importance of animal proteins in Nano medicine and the various benefits of these biomolecules for the preparation of drug delivery carriers and the characteristics of plant protein Nano carriers and protein Nano cages and their potentials in diagnosis and treatment. Finally, the advantages and disadvantages of protein nanoparticles are mentioned, as well as the methods of production of albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations.


Assuntos
Albuminas/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Proteínas de Plantas/administração & dosagem , Paclitaxel Ligado a Albumina/uso terapêutico , Albuminas/química , Animais , Portadores de Fármacos/uso terapêutico , Composição de Medicamentos , Gelatina/química , Humanos , Proteínas do Leite/administração & dosagem , Proteínas do Leite/química , Neoplasias/tratamento farmacológico , Paclitaxel/administração & dosagem , Proteínas de Plantas/química , Albumina Sérica/administração & dosagem , Albumina Sérica/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA